CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features

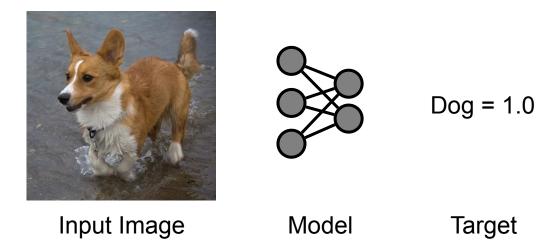
Sangdoo Yun Clova Al Naver

* Intern at Clova.

Dongyoon Han Clova Al Naver

Seong Joon Oh Clova Al LINE+

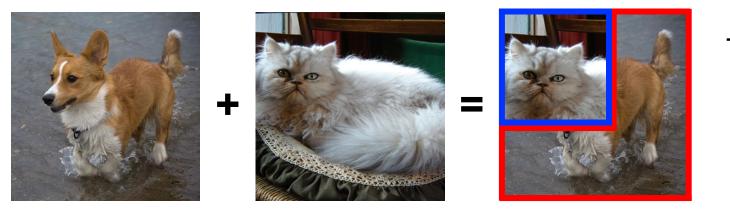
Sanghyuk Chun Clova Al Naver


Junsuk Choe* Yonsei University

Youngjoon Yoo Clova Al Naver

AVER Clova

Image Classification


Image Classification

• Regional dropout strategy for "occlusion-robust" classifier^[a, b]

[a] Devries et al., "Improved regularization of convolutional neural networks with cutout", arXiv 2017. [b] Zhong et al., "Random erasing data augmentation", arXiv 2017.

CutMix in a Nutshell

Target Label Cat = 0.4 Dog = 0.6

- Cut and paste two images and labels.
- In this way, the classifier learns "what" and "where" objects are in the image.

CutMix in a Nutshell

OriginalCutout[a]Mixup[c]CutMixImage: Second s

✓ Unlike Cutout, CutMix uses all input pixels for training.

✓ Unlike Mixup, CutMix presents realistic local image patches.

✓ CutMix is simple: only 20 lines of pytorch code.

[c] Zhang et al., "mixup: Beyond empirical risk minimization.", ICLR 2018.

Generalizability

ImageNet validation set accuracies

Model	Top-1 Err (%)	Top-5 Err (%)
ResNet-50 (Baseline)	23.68	7.05
ResNet-50 + Cutout (arXiv'17)	22.93	6.66
ResNet-50 + StochDepth (ECCV' 18)	22.46	6.27
ResNet-50 + Mixup (ICLR' 18)	22.58	6.40
ResNet-50 + DropBlock (NeurIPS'18)	21.87	5.98
ResNet-50 + Manifold Mixup (ICML' 19)	22.50	6.21
ResNet-50 + AutoAugment (CVPR' 19)	22.40	6.20
ResNet-50 + CutMix	21.60	5.90
ResNet-152	21.69	5.94

- ✓ Great improvement over baseline (+2%p).
- Outperforming existing methods.

✓ ResNet50 + CutMix ≈ ResNet152.

Localizability

• Weakly-supervised object localization (WSOL) on CUB and ImageNet.

Method	CUB200-2011 Loc Acc (%)	U
ResNet-50	49.41	46.30
ResNet-50 + Mixup	49.30	45.84
ResNet- $50 + Cutout$	52.78	46.69
ResNet-50 + CutMix	54.81	47.25

CutMix encourages detection of less discriminative object parts.

✓ Great improvement on localization task.

Transfer Learning

• CutMix-pretrained model is utilized as a backbone network.

Backbone – Network	Pascal VOC Detection		MS-COCO Detection	Image Captioning
	SSD	Faster-RCNN	Faster-RCNN	NIC
	(mAP)	(mAP)	(mAP)	(BLEU-4)
ResNet-50 (Baseline)	76.7 (+0.0)	75.6 (+0.0)	33.3 (+0.0)	22.9 (+0.0)
Mixup-pretrained	76.6 (-0.1)	73.9 (-1.7)	34.2 (+0.9)	23.2 (+0.3)
Cutout-pretrained	76.8 (+0.1)	75.0 (-0.6)	34.3 (+1.0)	24.0 (+1.1)
CutMix-pretrained	77.6 (+0.9)	76.7 (+1.1)	35.2 (+1.9)	24.9 (+2.0)

✓ +2%p improvements on MS-COCO ≈ ResNet50→ResNet101 backbone change.

Choosing CutMix-pretrained model brings great performance improvement.

Conclusion and Take-home Messages

- Need to train a strong classifier?
 - \rightarrow Apply CutMix regularizer to your classifier.
- Need a better pretrained model for localization-related task?
 - \rightarrow Download our CutMix-pretrained model.
- Our codes and pre-trained models are available online: <u>https://github.com/clovaai/CutMix-PyTorch</u>

(We are planning to release Tensorflow & MXNet codes and models.)

CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features

Please visit our poster (#6) for more experiments and analysis!

