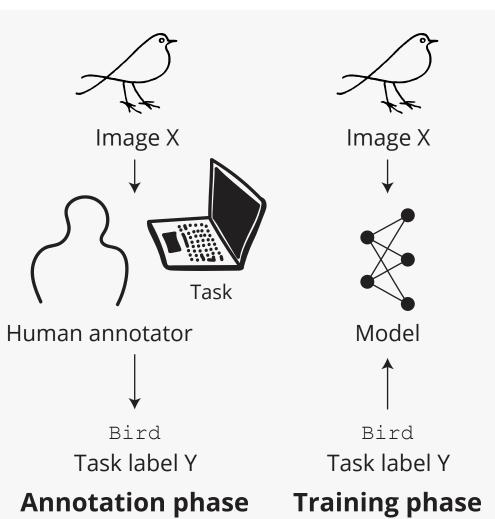
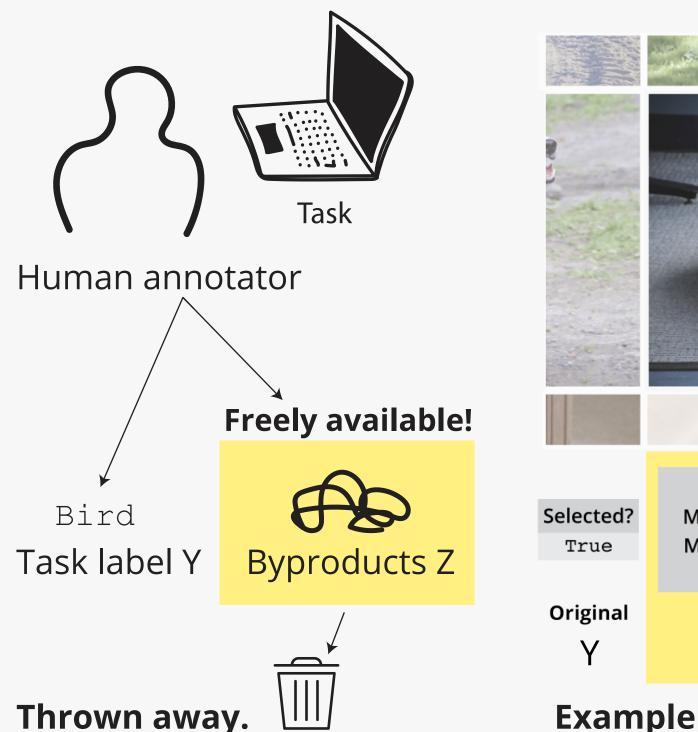
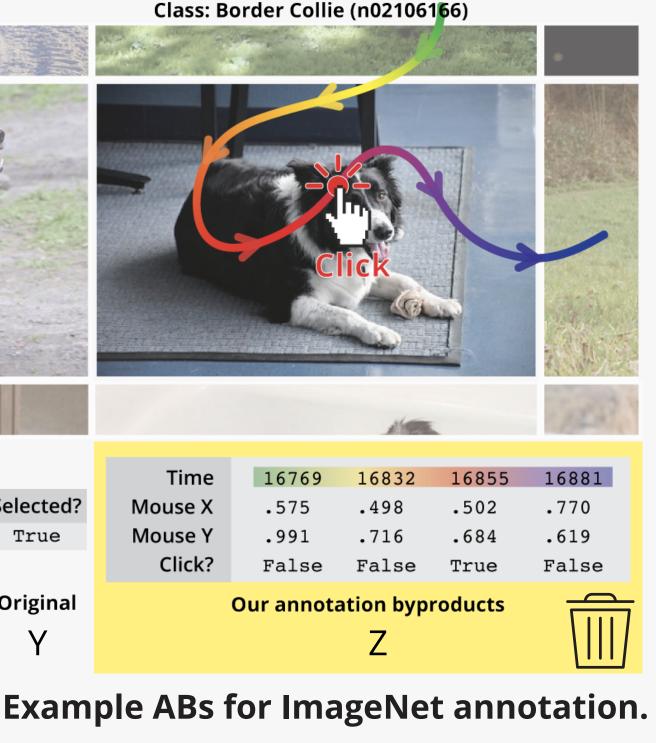
Neglected Free Lunch Learning Image Classifiers Using Annotation Byproducts

Minsuk Chang 💦 Google


*Equal contribution

Funded by Naver and DGIST


Motivation


Supervised learning

Widely-used recipe: (1) Collect Y for each X. (2) Supervise model f with (X,Y).

Neglected bit: Annotation byproducts (AB)

Human-computer interactions generate traces. Task label Y is only one of them.

Example byproducts Z:

- Mouse trajectory
- Time to click - Correction history
- Annotator ID - Task ID

- Information they contain:
- Weak object location?
- Sample difficulty?
- Annotation bias?

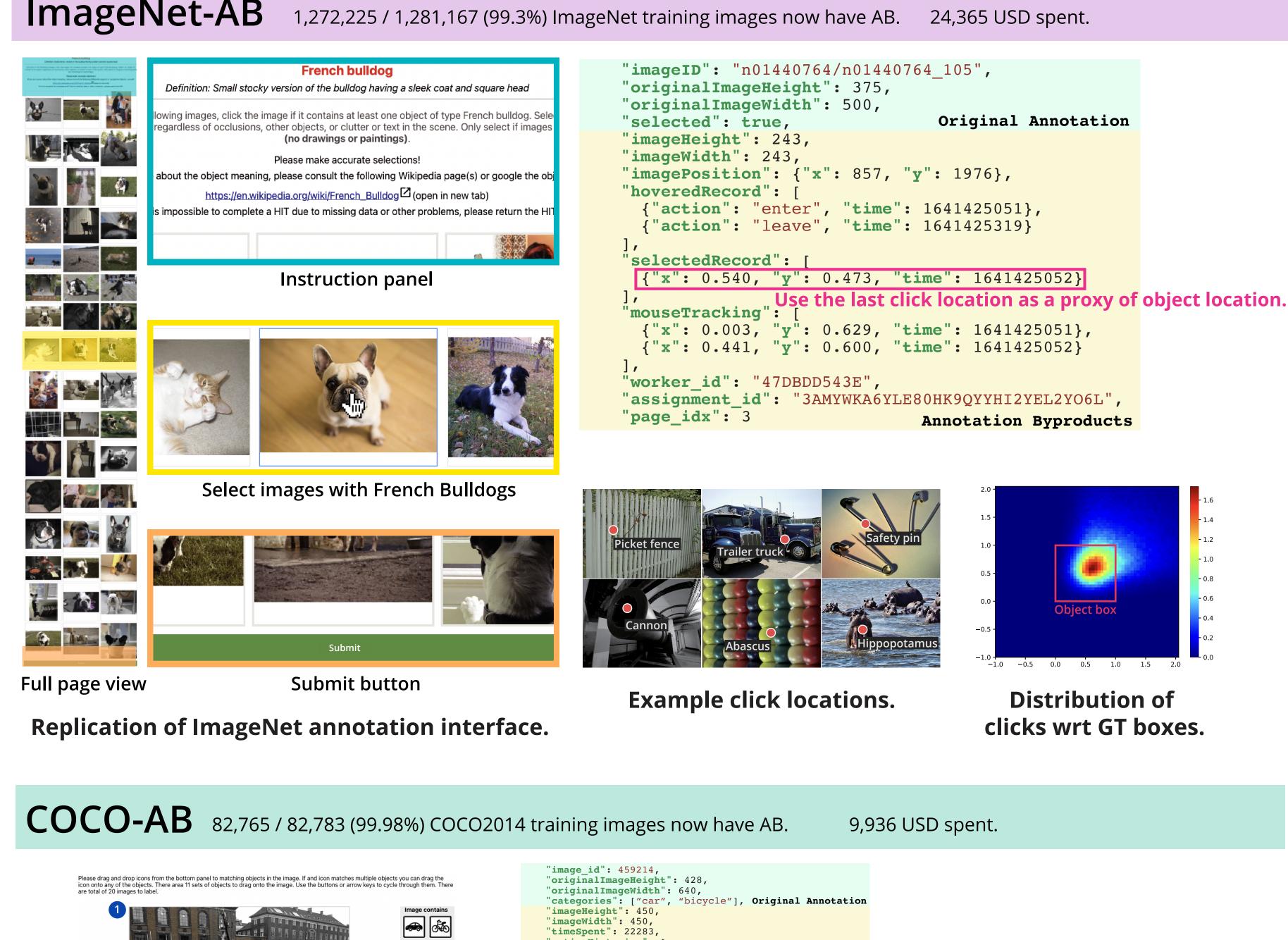
Do ABs further improve models?

 \longrightarrow

 \longrightarrow

 \rightarrow

Junsuk Choe* Sogang University


Sangdoo Yun

Seonghyeok Chun Jean Y. Song DGIST

Are you *collecting annotations* for supervised learning? You should definitely log *annotation byproducts*. They may improve model performances *for free*.

Collecting Annotation Byproducts

actionHistories":

"actionType": "add",

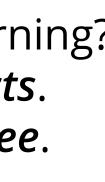
imeAt": 16723}

categoryName": "Animal"

usingKeyboard": false}

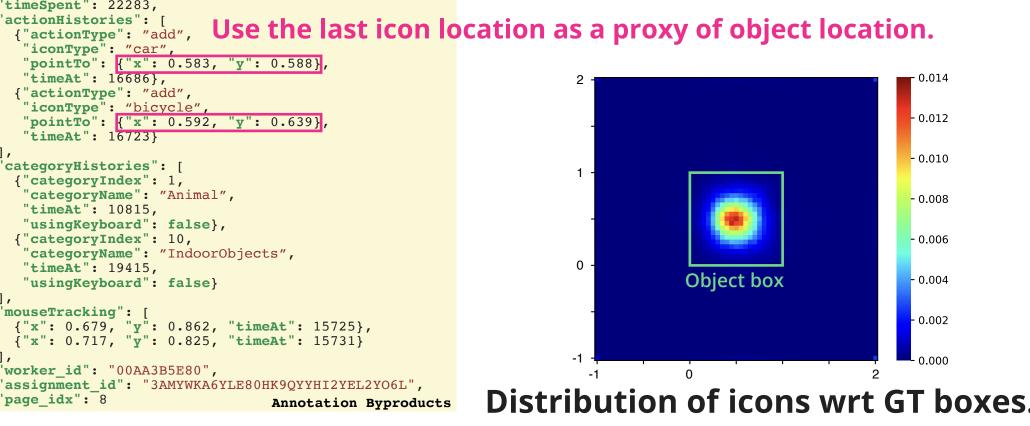
usingKeyboard": false]

"categoryIndex": 10,


ategoryHistories": {"categoryIndex": 1,

timeAt": 10815,

timeAt": 19415,



* 7 9 9 -

Learning Using AB (LUAB)

Special case of *Learning Using Privileged Information (LUPI)*. This work: Focus on AB approximating object locations.

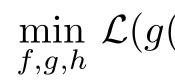
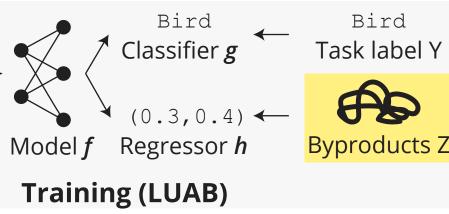
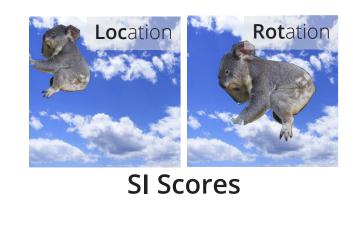



Image X



Results

ImageNet-AB + LUAB

+LUAB 11.7M 72.2 59.9 79.6 1.9 37.6 53.0 21.6 34.3 44.7 21.9 47.8 23.1 32.7 8.6 2 R50 25.6M 77.4 65.2 83.5 5.5 43.8 56.7 25.4 37.8 53.7 27.8 53.9 31.9 40.1 6.3 2 +LUAB 25.6M 77.5 65.2 83.8 5.1 44.7 57.0 25.7 38.2 55.1 28.5 55.6 33.5 40.9 5.6 2 R101 44.5M 78.6 66.0 84.1 7.6 47.0 60.7 26.5 38.2 55.8 29.4 53.4 33.1 38.9 5.6 3 +LUAB 44.5M 78.6 66.4 84.3 7.8 47.9 60.5 27.0 39.0 58.5 30.0 54.4 33.3 38.6 6.6 2 +LUAB 44.5M 78.6 66.4 84.3 7.8 47.9 60.5 27.0 39.0 58.5 30.0 <	Model	Params	IN-1K↑	IN-V2↑	IN-Real↑	IN-A↑	IN-C↑	IN-O↑	Sketch↑	IN-R↑	Cocc↑	ObjNet↑	SI-size	SI-loc↑	SI-rot↑	BGC-gap↓	BGC-acc
+LUAB25.6M77.565.283.85.144.757.025.738.255.128.555.633.540.95.62R10144.5M78.266.084.17.647.060.726.538.255.829.453.433.138.95.63+LUAB44.5M78.666.484.37.847.960.527.039.058.530.054.433.339.85.52R15260.2M79.067.284.59.549.562.027.639.658.830.553.933.338.66.62+LUAB60.2M79.267.284.89.549.962.127.639.759.031.355.534.240.65.83VIT-Ti5.7M72.860.780.77.948.552.320.532.863.823.146.323.833.98.21+LUAB5.7M72.960.880.98.448.452.921.133.864.223.747.425.434.77.81VIT-S22.1M80.369.186.020.060.353.429.442.373.831.254.532.039.56.41+LUAB22.1M80.669.786.422.861.255.130.043.074.132.355.133.739.65.91<																	22.1 20.4
+LUAB 44.5M 78.6 66.4 84.3 7.8 47.9 60.5 27.0 39.0 58.5 30.0 54.4 33.3 39.8 5.5 2 R152 60.2M 79.0 67.2 84.5 9.5 49.5 62.0 27.6 39.6 58.8 30.5 53.9 33.3 38.6 6.6 2 +LUAB 60.2M 79.2 67.2 84.8 9.5 49.9 62.1 27.6 39.7 59.0 31.3 55.5 34.2 40.6 5.8 3 ViT-Ti 5.7M 72.8 60.7 80.7 7.9 48.5 52.3 20.5 32.8 63.8 23.1 46.3 23.8 33.9 8.2 1 +LUAB 5.7M 72.9 60.8 80.9 8.4 48.4 52.9 21.1 33.8 64.2 23.7 47.4 25.4 34.7 7.8 1 ViT-S 22.1M 80.3 69.1 86.0 20.0 60.3 53.4 29.4 42.3 73.8 31.2																	26.7 27.4
+LUAB 60.2M 79.2 67.2 84.8 9.5 49.9 62.1 27.6 39.7 59.0 31.3 55.5 34.2 40.6 5.8 3 VIT-Ti 5.7M 72.8 60.7 80.7 7.9 48.5 52.3 20.5 32.8 63.8 23.1 46.3 23.8 33.9 8.2 1 +LUAB 5.7M 72.9 60.8 80.9 8.4 48.4 52.9 21.1 33.8 64.2 23.7 47.4 25.4 34.7 7.8 1 VIT-S 22.1M 80.3 69.1 86.0 20.0 60.3 53.4 29.4 42.3 73.8 31.2 54.5 32.0 39.5 6.4 1 +LUAB 22.1M 80.6 69.7 86.4 22.8 61.2 55.1 30.0 43.0 74.1 32.3 55.1 33.7 39.6 5.9 1 VIT-B 86.6M 81.6 70.3 86.6 26.1 64.1 58.0 33.0 45.7 76.0 31.7																	30.2 28.2
+LUAB 5.7M 72.9 60.8 80.9 8.4 48.4 52.9 21.1 33.8 64.2 23.7 47.4 25.4 34.7 7.8 1 ViT-S 22.1M 80.3 69.1 86.0 20.0 60.3 53.4 29.4 42.3 73.8 31.2 54.5 32.0 39.5 6.4 1 +LUAB 22.1M 80.6 69.7 86.4 22.8 61.2 55.1 30.0 43.0 74.1 32.3 55.1 33.7 39.6 5.9 1 ViT-B 86.6M 81.6 70.3 86.6 26.1 64.1 58.0 33.0 45.7 76.0 31.7 56.6 35.1 41.3 6.4 1																	27.2 31.6
+LUAB 22.1M 80.6 69.7 86.4 22.8 61.2 55.1 30.0 43.0 74.1 32.3 55.1 33.7 39.6 5.9 1 ViT-B 86.6M 81.6 70.3 86.6 26.1 64.1 58.0 33.0 45.7 76.0 31.7 56.6 35.1 41.3 6.4 1																	13.9 14.4
																	17.4 18.7
				70.3 71.9	86.6 87.4	26.1 31.1	64.1 66.0	58.0 58.5	33.0 35.5	45.7 48.4	76.0 77.5	31.7 35.0	56.6 57.1	35.1 36.8	41.3 41.6	6.4 5.6	18.1 23.9

ID generalisation

COCO-AB + LUAB

Model	R18	Rand	LUAB	R50	Rand	LUAB	R152	Rand	LUAB
mAP↑	67.9	67.8	68.0	73.0	73.6	74.2	73.3	74.6	75.4
$V^{\min} \downarrow$	51.8	52.1	51.6	47.6	47.3	47.0	47.4	47.8	47.1
$V^{\mathrm{avg}} \downarrow$	28.7	28.7	28.4	25.0	24.9	24.5	24.8	25.5	24.7
Model	ViT-Ti	Rand	LUAB	ViT-S	Rand	LUAB	ViT-B	Rand	LUAB
mAP↑	72.6	72.2	72.7	76.2	76.9	77.3	76.4	74.5	77.5
$V^{\min} \downarrow$	49.1	48.9	48.4	47.1	46.9	45.8	46.6	47.1	45.6
ττανσι	270	26.0	268	257	256	24.6	25 0	25 1	215

- LUAB helps ID generalisation.

John Joon Young Chung University of Michigan Seong Joon Oh Stal

 $\min_{f,a,h} \mathcal{L}(g(f(X)), Y) + \lambda \| h(f(X)) - Z\|_{s1}$

Model Image X **Inference (identical to original)**

→ Bird

Prediction

OOD generalisation

Spurious BG dependence

LUAB improves ID & OOD gen. and reduces BG dependence.



Image - human S (frisbee) = 0.3 \rightarrow Vmin & Vavg \uparrow

Image - frisbee S (frisbee) = 0.5